指向核能復興之羅盤 (五十三)

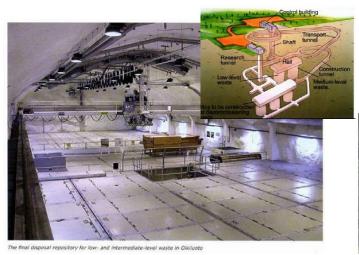
訪問世界最佳的芬蘭最終處置場 順利進行 160萬瓩的建設與新建計畫

梁天瑞譯

台電核能發電處

作者: IAEA, NEA ISCE委員會主席 水町涉 譯者:行政院原子能委員會技正 石門環 *日文原文刊載於 2008年 09月 ENERCY雜誌

大型巴士開進岩盤中之最終地下處置場


此次核能潔淨化委員會(ISOE)歐洲研討會在芬蘭首都赫爾辛基西方的古都 Turku 召開,筆者擔任大會主席並在開、閉幕典禮中致詞。

晚上 12 時抵達赫爾辛基,太陽還在地平線上方,相當明亮,街燈也亮著,但似乎沒什麼意義,旅館裡光線也始終明亮,3 點半就要迎接日出,此處真的是白夜。

此次共 27 個國家 155 人參加,迎接核能復興的來臨,各國代表均熱烈議論。Turku 是慕明妖精(Moomin)的家鄉,也是有名的歷史性城鎮,歡迎會就在 800 年前建造的 Turku 城內宴會廳舉行,有人裝扮成當時的國王、女王蒞臨會場,用餐時還有扮演測 試食物是否有毒的人物實際試毒,這是一場宛如古代的宮庭盛宴。

最後一天有 100 位出席會議的 ISOE 集團人員赴 Olkiluoto 核電廠及鄰近的高、中低階處置場訪問。中低階處置場以前是搭車進入,此次則是搭乘 2 台 50 人座的大型巴士,從入口直接開到地下 60 公尺的處置場,讓大家驚嘆不已。

從入口開始全部是岩盤,雖然有的是裝飾成混凝土,但岩盤與鑽掘的痕跡仍保留原樣,令人感覺沒有比這裡更堅固的設施。從堅固的隧道往下,巴士停在地下 60 公尺處,門一打開,右下方洞穴為低階、左下方則為中階廢棄物貯存場所,其深度為地下 60~95 公尺,輻射劑量為 0.29 微西弗,照片 1 為中低階最終處置場景象,照片 2 則為前往中低階最終處置場之輸送用隧道。

(左)照片 1 Olki luoto中低階廢棄物最終處置場 (地下 60m)

(右)照片 2 中低階廢棄物最終處置場之輸送用隧道

Olkiluoto 中低階廢棄物最終處置場係芬蘭政府於 1991 年訂定「運轉廢棄物處置 設施安全性一般規則」後,1992 年開始施工,目前仍在營運中,這是在鉅大岩盤中挖 掘的洞穴,往四周張望,沒有一滴水漏出,是世界上最佳的廢棄物處置設施。

在其近傍,地下 500 公尺深的高階廢棄物處置場正進行掘削工程,這裡的岩盤狀況絕佳,各國代表欽羨之情溢於言表,也深入地下參觀。主辦單位安排此次參訪行程真是細心周到,在此要向一直協助筆者的 ISOE 歐洲技術中心的 Ms. Caroline Schieber 代表及擔任 ISOE 委員會副主席的芬蘭核能管制署 Mr. Veli Riihiluoma 表達感謝感激之意。

世界最大的 160萬瓩 Olki luoto核電廠順利興建

筆者曾數次參訪 Olkiluoto 核電廠,1 號機為 87 萬瓩的 BWR,1979 年開始運轉,2 號機 89 萬瓩的 BWR,1982 年開始運轉,目前這兩部機組仍持續穩定運轉中,鄰旁的3 號機正興建中。上次參訪時,3 號機發現混凝土品質問題,工程沒什麼進展,現在則順利興建中。核電廠心臟的反應爐壓力容器為三菱重工製造,正在海上運輸中,在此地,日本製鋼所也因鍛造而有名,受到高度肯定,也令筆者感到驕傲。

Olkiluoto 3 號機為世界最大的 160 萬瓩歐洲型 EPR,其興建正是停止從俄羅斯輸入電力的王牌。照片 3 為 Olkiluoto 全景,右側上方往下分別為 1、2 號機,最下方為興建中的 3 號機,1、2 號機的左側為 4 號機的預定地,其上方則為前述廢棄物最終處置場,4 號機已完成環境評估,160 萬瓩級的建設計畫正積極準備中。

74 台電核能月刊

照片 3 Olki luoto核電廠及廢棄物最終處置場全景

決定興建 Olki luoto 4號機

芬蘭 2006 年之各種發電比例如圖 1 所示,全部供電量為 90TWh,核能占最大比例 24.4%。筆者老友芬蘭核能安全暨輻射管制署 (STUK) Laaksonen 署長強調:「能源自立為當務之急,從俄羅斯輸入電力雖然已經降低,但仍占 12.7%,有必要將此部份電力國產化,以核能發電替代」。因此 Olkiluoto 4 號機正積極準備興建,這是芬蘭繼此地 3 部機組及 Loviisa 2 部機組後的第 6 部核能機組,在此之後,以 Loviisa 3 號機為始,新的廠址也在具體規劃中。

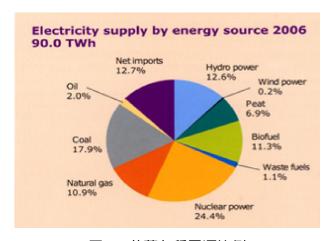


圖 1 芬蘭各種電源比例

今年 4 月 25 日,TVO 電力公司在股東大會上一致同意向政府評議會申請興建 Olkiluoto 4 號機,並向 STUK 提出可行性調查報告。

Olkiluoto 3 號機以 2011 年開始運轉為目標積極進行建設,此後 4 號機將隨即進入

興建階段,預定 2020 年開始運轉,現在包括 BWR、PWR,預定從 5 種型式的反應爐中選擇其一,並設定 100 萬~180 萬瓩級,總預算 30~40 億歐元 (約 5000~6000 億日圓)。

TVO 電力公司擁有 Posiva 公司 60%的股份, Posiva 是管理最終處置場的公司, 已表明將向政府提出 4 號機用過燃料最終處置的申請,顯現出對遙遠未來的最終處置 也要事先解決的先見之明,芬蘭就像這樣事先計畫,展現出世界性的模範。

政府決定試掘世界唯一高階廢棄物處置場

後來繼續參訪高階廢棄物處置場,照片 4 為其全景,照片 5 則顯示從入口開始就 是堅固的岩盤,試掘的縱坑也如照片 6 所示,是相當好的岩盤。

照片 4 高階最終處置場地上全景

照片 5 高階最終處置場入口之岩盤

照片 6 高階最終處置場縱坑試掘

2001 年芬蘭政府決定推動最終處置的政策,2003 年受理建設許可,2004 年開工,試掘工程預定2011 年完工,費用約7000 萬歐元(約120億日圓),2012 年將申請最終處置場的建設許可,預定2020 年開始營運。

現在運轉中的 Loviisa 2 部機及 Olkiluoto 2 部機的用過燃料估計有 3500 噸的鈾,若包括興建中的 3 號機,則必須處理 5500 噸的鈾,這是以此為目標所進行的計畫。

最終處置場如圖 2 所示,設置在地下 400 公尺處,此後將再挖掘到地下 500 公尺,地下之收納貯存隧道寬 3.5 公尺,進出通路用隧道寬 5.5 公尺,縱坑直徑 5.7 公尺,收納貯存隧道總長度約 15 公里。圖 3 顯示收納貯存隧道的下方放置貯存桶(Canister),圖 3 右側顯示 Loviisa 與 Olkiluoto 各核能機組貯存桶的尺寸亦不同。

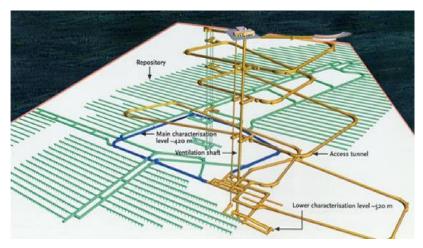


圖 2 高階最終處置場計畫 (地下 400~500m)

圖 3 高階廢棄物最終處置場之貯存桶收納方式

其次是說明的資料令人大為驚訝,圖 4 為未來芬蘭核能有關長期計畫,這是 2000~2120 年、跨越 120 年的核能發電與最終處置場的長期展望 (Vision)。預測 50 年後、100 年後之事相當困難,此一計畫是否妥當見仁見智,但這是匯集現在的智慧所作成,當然隨著技術的進步也會加以修正,相關人員的說明令人感動不已。芬蘭的核能界人士不畏批判,以現今的智慧明確呈現出最佳視野,在此要對他們表達敬佩之意。

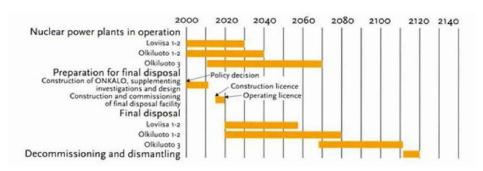


圖 4 至 2120年之核能發電與最終處置場計畫

芬蘭之國際競爭力及數學程度世界第一

以往日本的國際競爭力為世界第一,學生的數學程度也是世界第一,圖 5 顯示日本國際競爭力之演變,1988~1993年之 5 年間曾是世界第一,相當令人懷念。2002年 跌落到第 30 名,2006年終於又回復到第 17 名,現在的世界第一就是芬蘭。

(IMD:瑞士經營開發國際研究所)

圖 5 日本國際競爭力排名之演變(圖為筆者作成)

中學生(15 歲)的數學程度調查結果,2006 年芬蘭與台灣為世界第一,韓國、 荷蘭、瑞士、加拿大緊跟在後,日本從過去的第一跌落到第10名,真是情何以堪。

筆者詢問芬蘭絕佳的教育狀況,教育的費用從小學到博士課程全部免費,但據說有才華的人才能夠進入大學甚至博士課程,而且也完全沒有日本那樣的升學補習班,只有在學校受教、教室內禁止私語,澈底執行認真聽課。日本則是教室內竊竊私語、欺負同學、晚上到補習班補習,浪費青春,成績讓世人取笑,以往的日本正如現今的芬蘭。

筆者非常喜歡芬蘭,每次來到此地總是覺得輕鬆自在,實在是不可思議。北歐人身高相當高,動輒 190cm、200cm 的人不少,而且腿部長,腰部位置與日本人完全不同,皮膚顏色為清澈透明的白色,頭髮為白金色系的金髮。相對而言,芬蘭人的身長通常沒有那麼高,至於為何看起來比較穩重,令人連想到芬蘭人講話的樣子正如慕明妖精那樣沈穩,完全沒有看過像現今日本年輕人那樣奇聲怪語的光景。服裝顏色也多是黑、深藍、灰色系列,既有型又沈穩,正如往昔日本武士的形象。

學習芬蘭的教育

芬蘭國土面積與日本大致相當,人口 530 萬則為日本二十分之一以下,其國際競爭力與教育水準正如前述,均為世界第一,產業以輸出傳統的紙、紙漿、木材及鈷等金屬為主,最近在高科技業方面以 Nokia 手機為主,在世界上的占有率相當傲人,也因此提高了國際競爭力。

其結果是 2006 年每人 GDP(國內總生產)為 4 萬 650 美元,大約是日本 2 萬 3000 美元之 2 倍,此一差異可以斷言是教育制度的好壞所造成,日本在過去曾是世界第一,如今掉落到如此地步,全體日本人有必要深思熟慮。

芬蘭在核能方面正如圖 4 所示,向民眾展示令人驚嘆的長期視野,這種透明性的呈現實在令人敬佩不已。在電力供給方面,不燃燒石油,而且要將目前從俄羅斯輸入的 12%比例的電力以核能發電取代,使電力自足,這就是以明確而堅定的哲學為本的視野。

石油資源貧乏的日本更需要有這種長期眼光與哲學素養,也有必要訂定以核能發 電為中心的長期能源政策。