

沸水式反應器壓力邊界異材銲道 腐蝕疲勞行為研究

黃俊源、楊明宗、鄭勝隆 劉如峰、郭榮卿

2009中華核能學會年會暨用過核燃料管理策略研討會

核能研究所 98年12月16日

- 1. Introduction
- 2. Objectives
- **3. Experimental procedures**
- 4. Results and discussion
- 5. Conclusions

- Incidences of stress corrosion cracking of Alloy
 182 weld in both BWRs and PWRs have been reported.
- 2) Alloy 52, which has a higher chromium content than Alloy 182/82, has been used to repair the defected CRDM/thermocouple penetration nozzles, pressurizer nozzles and hot leg nozzles, etc. because of its superior SCC resistance.

1. Introduction

Davis-Besse Reactor with a Hole in its Head

Example of Cracking in R/V Head Penetration Nozzle

Oconee-3(U.S.)('01) start of operation : December 1974

Example of Cracking in Pressurizer nozzle

Tsuruga 2 Pressurizer Relief Nozzle Safe-end Leakage

Micro Printing Result

Top of Pressurizer

sult Safe-end Weld Reference: Nuclear and Industrial Safety Agency, Ministry of Economy, Trade

Institute of Nuclear Energy Research

Reference materials⁵

1. Introduction

	Date	Plant	Component			
BWR	1978	Duane Arnold	Recirculation inlet nozzle			
	Spring 1986	Vermont Yankee	Core spray nozzle Recirculation inlet nozzle			
	1986 & 1987	Chinshan units 1 and 2				
	Fall 1988	Brunswick units 1 and 2	Recirculation inlet nozzle			
			Core spray nozzle			
	Spring 1991	River Bend	Feedwater nozzle Feedwater nozzle			
	Spring 1996	Brunswick units 1 and 2				
A182/A82銲道破	Fall 1997	Hope Creek	Core spray nozzle			
損案例	Spring 1998	Nine mile point unit 2	Feedwater nozzle			
	Spring 1999	Perry	Feedwater nozzle			
	Fall 1999	Duane Arnold	Recirculation inlet nozzle			
	2001	Hamaoka	CRD HousingCore shroud support structureRecirculation outlet nozzle			
	2001	Tsuruga				
	2005	Chinshan unit 1				
	2005	Kousheng unit 2	Recirculation outlet nozzle			

PWR

A182/A82銲道破 損案例

Date	Plant	Component
1991	Bugey unit 3	CRDM nozzle
2000	Ringhals units 3 and 4	Hot leg nozzle
2000	VC Summer	Hot leg nozzle
2001	Oconee-1	CRDM nozzle and thermal
		couple nozzle
2001	Oconee-3	CRDM nozzle
2001	Arkansas	CRDM nozzle
2002	Davis-Besse	CRDM nozzle
2003	Tsuruga	PZR relief and safety
		nozzle
2005	Cook 1	PZR safety nozzle
2006	Millstone 3	PZR spray nozzle
2006	SONGs 2	PZR safety nozzle
		PZR spare nozzle
2006	Davis Besse	Cold leg drain
2006	Calvert Cliffs 1	PZR relief nozzle
2006	Calvert Cliffs 1	Hot leg drain
2006	Wolf Creek	PZR relief, safety and surge
2007	Farley 2	PZR

1. Introduction

(3) The transitional region of the dissimilar metal weldment(DM) is noted to have a complex microstructure, welding residual stress and wide variations in chemical composition.

2)

- To study the corrosion fatigue crack growth rate of the dissimilar metal weldment under nominal constant △K.
 - To investigate the effects of the transitional region of the DM on the corrosion fatigue crack growth rate.

3. Experimental procedures

Designation — Composition (wt%)	
C Si Mn P S Ni Mo V Cr	Fe
A508F1 0.16 0.21 1.35 0.005 0.005 0.76 0.57 0.014 0.13	Bal.
A508F2 0.15 0.22 1.36 0.005 0.015 0.82 0.52 0.013 0.15	Bal.

Chemical Composition of Alloy 52

Composition (wt%)															
С	Mn	Fe	S	Si	Cu	Ni	Cr	Al	Ti	Co	Mo	Р	Nb+Ta	Al+Ti	others
0.024	0.24	8.07	< 0.001	0.15	0.01	61.44	28.8	0.72	0.51	0.009	0.01	0.003	0.01	1.23	< 0.5

Test condition of high-temperature water environment

Test parameters	Values
Pressure, MPa	10
Temperature, °C	300
Conductivity(inlet), µScm ⁻¹	0.06
Conductivity(outlet), µScm ⁻¹	0.08
Oxygen(inlet),	6.8 ppm
Oxygen(outlet),	7.8 ppm
ECP(SHE)	0.2 volt
pH(inlet)	6.5
pH(outlet)	6.6
Autoclave exchange rate	1 time/h

Sampling scheme for the dissimilar metal weldment

4. Results and discussion

- 1) Fatigue crack growth rate measurements for Alloy 52-A508 weldment at 300 °C in air
- 2) Nominal constant ΔK test in high temperature water environment
- **3) Welding residual stress analysis and measurement**
- **4)** Fatigue crack closure measurement

1) Fatigue crack growth rate measurements for Alloy 52-A508 weldment

Fatigue crack growth rate against stress intensity factor range for Alloy 52-A508 weldment tested at 300°C in air 医研

Fatigue crack growth rate overshoot in the HAZ. It could be related to the residual stress, higher hardness and complicated microstructure.

Institute of Nuclear Energy Research

18

Fatigue fracture surface of Alloy 52-A508 weldment

(a) macroscopic fracture surface showing the quasi-cleavage-like surface of the heat-affected zone

(b) showing brittle striations at a higher magnification.

(2) Nominal constant ΔK test in high temperature water environment

A schematic disposition of the ACPD probes

Fatigue crack growth behavior of Alloy 52-A508 specimen without a **second states** a state state in the high temperature water environment.

Fatigue crack growth behavior of Alloy 52-A508 specimen with a side groove on each side in the high temperature water environment.

A comparison of fatigue crack growth behavior for Alloy 52-A508

X weldment with and without groove in high temperature water environment.

Corrosion fatigue crack growth rates increasing with the crack advance might be due to

- An increase in the tensile residual stress and a decrease in crack closure effects in the Alloy 52 weld.
- 2) Macro-composition transition from the bottom to the center of the weld.

(3) Welding residual stress analysis and measurement

Residual stress measurement in front of the specimen notch

Residual stress measurement in front of the specimen notch

FEM model for the Alloy 52-A508 weldment.

Welding residual stress distribution for Alloy 52-A508 weldment.

A comparison between analytic results and experimental measurements on the welding residual stress.

Fracture surface of Alloy 52-A508 weldment at a loading frequency of 0.02 Hz in a simulated BWR water environment.

(4) Fatigue crack closure measurement

Fatigue crack closure measurement in front of the specimen notch

Crack opening stress intensity factor, Kop, was determined by the intersection of the two secants of uploading curve.

$\triangle K_{eff} = \triangle K_{max} - \triangle K_{op}$

The crack closure evolution along the crack length in the weld.

Institute of Nuclear Energy Research

Macro-composition transition from the bottom to the center of the weld.

1)

2)

- Corrosion fatigue crack growth rates for the dissimilar metal weldments were observed to increase with crack advance under the nominal constant $\triangle K$ loading mode. This could be due to the effects of an increase in the tensile residual stress and a decrease in the crack closure in the Alloy 52 weld.
- The tensile residual stress measured by a hole-drilling strain gauge method increased with the weld depth. The trend of stress distribution by numerical analysis agrees well with that for the experimental results.

3) The crack closure effects in the weld were verified to decrease with the crack advance measured by the strain gauges ahead of the crack tip.

